Algebraic Iterative Reconstruction-Reprojection (AIRR) Method for High Performance Sparse-View CT Reconstruction

نویسندگان

  • Ali Pour Yazdanpanah
  • Emma E. Regentova
  • George Bebis
چکیده

The reconstruction from sparseor few-view projections is one of important problems in computed tomography limited by the availability or feasibility of a large number of projections. Working with a small number of projections provides a lower radiation dose and a fast scan time, however an error associated with the sparse-view reconstruction increases significantly as the space sparsity increases that may cause the reconstruction process to diverge. The iterative reconstruction-re-projection (IRR) algorithm which uses filtered back projection (FBP) reconstruction has been used for the sparse-view computed tomography applications for several years. The IRR-TV method has been developed as a higher performance alternative to the IRR method by adding the total variation (TV) minimization. Here, we propose an algebraic iterative reconstruction-re-projection (AIRR) algorithm with the shearlet regularization. The AIRR coupled with the shearlet regularization in image space attains a better estimation in the projection space and yielded a higher performance based on subjective and objective quality metrics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NUFFT-Based Iterative Image Reconstruction via Alternating Direction Total Variation Minimization for Sparse-View CT

Sparse-view imaging is a promising scanning method which can reduce the radiation dose in X-ray computed tomography (CT). Reconstruction algorithm for sparse-view imaging system is of significant importance. The adoption of the spatial iterative algorithm for CT image reconstruction has a low operation efficiency and high computation requirement. A novel Fourier-based iterative reconstruction t...

متن کامل

Fast System Matrix Calculation in CT Iterative Reconstruction

Introduction: Iterative reconstruction techniques provide better image quality and have the potential for reconstructions with lower imaging dose than classical methods in computed tomography (CT). However, the computational speed is major concern for these iterative techniques. The system matrix calculation during the forward- and back projection is one of the most time- cons...

متن کامل

A CT Reconstruction Algorithm Based on L1/2 Regularization

Computed tomography (CT) reconstruction with low radiation dose is a significant research point in current medical CT field. Compressed sensing has shown great potential reconstruct high-quality CT images from few-view or sparse-view data. In this paper, we use the sparser L1/2 regularization operator to replace the traditional L1 regularization and combine the Split Bregman method to reconstru...

متن کامل

Sparse-View CT Reconstruction Based on Nonconvex L1 − L2 Regularizations

The reconstruction from sparse-view projections is one of important problems in computed tomography (CT) limited by the availability or feasibility of obtaining of a large number of projections. Traditionally, convex regularizers have been exploited to improve the reconstruction quality in sparse-view CT, and the convex constraint in those problems leads to an easy optimization process. However...

متن کامل

Deep-neural-network based sinogram synthesis for sparse-view CT image reconstruction

Recently, a number of approaches to low-dose computed tomography (CT) have been developed and deployed in commercialized CT scanners. Tube current reduction is perhaps the most actively explored technology with advanced image reconstruction algorithms. Sparse data sampling is another viable option to the low-dose CT, and sparse-view CT has been particularly of interest among the researchers in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016